
 

Quantum Gravity Shoaib Akhtar
Lee Ii Introduction and overview by Bianca Dit rich on the

different Quantum Gravity approaches
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Lee2 i Constrained systems and Hamiltonian formalism

Gauge symmetries

BD Sudideangravity with zero cosmological Constant

Canonical formulation of Constrained systems
arrange Transformation

why are we interested in a constrained System
Can we relate constraints gauge symmetries

gun HD lo r
t

3D 6 0 topological Theory

ein µ spare time indices
i internal Triad indices

Triad connection

Constraint on phase space Olavi pi O

constraints hold at every instant of time in the evolution
of thesystem

This means constraint is conserved quantity

Conserved Quantities Symmetries

Lagrangian formalism

symmetry Conserved quantities Noether
Theorem



somewhat
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iwd transformation
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M 11 out non trivially on extremaof action

T These two evolution
are physically equivalentII

when they are related by
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Associate with this symplectic structure in termsof
conjugal variables

fai P y fij
Time Solvation f H H Floroof Hamiltonian

Ary phase space function can generate flour

Hamiltonian formulation for a constrained system

If is not invertible then

Yal ai Pi 0 Primary Constraints

trinary Constraint surface
Call the physical contentof

H Ho yay
theory lie here

Add constraints in terms of
Lagrange Multiplies us
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so's a weak Squality equal under constraint surface

f H1 fS HB suiT weakquality
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Ulla.pt P Pr Primary Constraint

Tu la pl VI Hb 0 so done with
constraints

How to interpret these constraints

Change of variable Q ar t our Q2 or our

Lagrangian only cuts on Qi not on Qr

Symmetry 8am afar Hku a lagrange

dove afar Ulf a
multiplier

Hq 1 9h for Iq o

804 0 but dQr 2u

Soi Q is physical quantity

Qr is internal degree offreedom
Constraints primary secondary

first class second class

Dis.hn q2ndloye
Consider a system with constraints I Call constraints

primary secondary



Fire If there is a subset of constraints Ya

whose bracket with all constraints weakly vanishes

ie f ya I Is 20

Then the Ya are called first class constraints

No restriction on associated Lagrange multiplier

gauge symmetries are generated by first
class

constraints

Remaining constraints denoted by Xm
hen the sub matrix defined as

Amn Xm Xn is invertible

X n are called 2nd class constraints

Corresponding lagrange multipliers
are Cueakly fixed

let e beone of the constraint
so E 113 0 Tk flowgeneratedby H of E

is zero at least weakly 1

or read as H E 3 0

The flow of H generated by E is zero
and this is what we call symmetry
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Lee3 i Examples of parametrized particle canonical analysis
Physical phase space Diva observables The Diva program case

of the parametrized particle
Atotally constrainedsystem exampleof the parametrized
particle

Free non relativistic particle in Id

Stop III Em if i ai doff anti anti PMI et z

t independent variable

soloist tail Im.at
dsovdI denotes derivative w r t E

ds

So is invariantunder s 5 fCsl

Canonialysis pt off m Pa off m.at

Wehave a primary constraint 8

C Pt TIM 0

Hamiltonian of the H Pt t't par 9 L
system



H t c Totally constrained system
Hamiltonian is proportional to
constraints

µ Nts C

flow generated by H
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m

P ar o pig o

Physical PhaseSpace Dirac observables

gauge orbits of phasespace
variables generated by e
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2 independent dire observables
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To apY bs
As many gauge fixing as constraints
f G e



Good gauge fixing
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Read
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I 961 fat Not Poem z to

fomhtnka.immdidreleud Fp Pa

not imposed Thereform complete

set of Dinu observables

So we form
Poisson Bradet FI FI I

Dirac Program

a Find a representation of the phase space variable as operators
acting in thekinematical Hilbert space flain satisfying
thestandard commutation relation

ith C
b Promide the constraints to self adjoint operators in Haim
c Characterize the phase space of solution of the constraints

Inner product flphy
d Find a complete set of gauge invariant observables
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So the equation becomes ClY
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Leche Actions of gravity The sinstein Hilbert oution 3D

gravity first order formalism of 3D gravity
triads connection

Actions for Gravity
Einstein Hilbert action

S ftp.rg.d x
Gun Rm f Rgm O

Rui D
for dimlspacetime 2

proof of equivalence
RM IR gm 0 let D dim spacetime

R I R D o I E R 0

for Dt2 R o

F Gm D Rug 0 for Dt2

Rm o Rm yg 0 in 3d spacetimeIRunyon antisymmetric in 1st two indices
Nn In 3 pairs because

in 3d

antisymmetric in last two indices Rn
Runror have

MII In 3 3 pairs same me of
degreesof

freedom



Symmetric under 1stpair 2nd pair
All

so mint In 6 independent
components in3D

Rem 6 independent components in 3D

3D gravity Topological Theory
no local degrees of freedom

Hedontexpatgraviton field in 3D
because we dont expect local degrees of freedom

Topology of the manifold is characterized by the

Fundamental group
Ind M IR X E

E is 2 d surface

Thetopologyof red surface is very well clarified

Orientable surfaces are holomorphic to sphere S

or to connected sum of g tori

g genus of the surface

9151 0 i t.es 0



To
First order formalism of 3D gravity

gin n einen in.fi

8ij Minhousi Metric in E 4,2 D

At eachpoint we raise orthonormal frame

In 3 dimensions einix are called Tetrad

In h i einix i i Ouatriad

Ind Gm ein e't dis

gm has 6 degrees of freedom

for ei we get 9 degrees of freedom

So we see that from going i from metric to triad

we had introduced some irrelevant informations

So we Additional Gauge Symmetry



link Ri ly e x R e So

so we get addition 5067 gauge symmetry

This transformation keeps the metric unchanged

Instead of themetric we can work with triad

SpinConnedionHtransport objects with internal indices
and also to ensure the proper transformation

behavior under

internal rotation for the co awe of objects with

internal indices spin connection

Wu n Du
i k internal indices

M spacetime index

fi is vector for internal indices and scalar for
spacetime inder

Du Oli 2n
i t wi n f k

Dn f j In Oj Wah 0 n

Dn V is In Vi Pf voi t win Uh

Cheek the derivative of a scalar s Du 0 In 0

It comes out to be ordinary partial derivative



Covariant
Derivative PYg

i notation used Pµ
bui cevita
comedian

Compatibility Condition Du ein o

This condition makes sure that

Derivative commutes with the contraction

wine e n Rue
at

e n Penne e n 2nd
spin connection compatibly determined by it e

proof



Conversely we can also define a connection using CA

because its invertible F
N

Pfe es wine dj Fuels

Condition on w F r

we impose metric compatihily
torsion free on F

wµjn Walk Oe

Metric Compatible Bugg 0

we know Bn Pij O

Soi Fu e es 9 3 0

Now we use metric compatibility

Du Ce e5 gyp Wuji Wn i j

metric combatide

Wuji Wnij Antisymmetric

so we show that D x Sju O

Alsometric compatible



TORSION FREE Condition of F
nH

W is also Torsion free
e Tim Que's 2 ein wind wine

Rendell In 1st order formulation we will wk

Wijk antisymmetric im j and k

but there Torsion does not vanish appriori
but

vanishes as Eovurlion of Motion
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Leese Firstorder formalism of 3D gravity

action symmetries Canonical Analysis

Assume w isantisymmetric

wewant towrite RiemanTensor as a function of anti symmetric
spinconnection

Ray Vs pups Dx Dn Vs
e Du Du Di Du Vj

Vg e Vj

so Ringe Vs e Fµ jk Ek Vs

T
curvature 2 form of the
connection w

Fµvjk In Wijk J g Wn j k Wuji w da wi j ewalk
In 3D

enforce the antisymmetry of Wain and of Funjk
by defining

Wµjk E j ek wut

Funjk E je n Ff
Ei n totally antisymmetric Sens L



Eijn are also the structure constant for
Svu soll lie Algebra

Dµ 2nd 1 E ne w lol

f fu 2µW y Ji Wen t shik un w k Curvature

form

Tdm Juel 2 et sljhwnjeyn ddkwuje.me

Torsioform

Einstein Hilbert Adion in terms of Ce w

Startwith S tfrg.R.dkK

R Rm gm Rua
6

gu
Fdetg Ideteill 1detail I I

det of co triad

detail is determinant of triad Invariant under

S Tea Flu lol Een dy
Rioting in internal
Translation

Tnthis formulation we tensor density with
ditteomermis

uncouple fermions with weight 1
gravity

Bf action topological Theory in any dimensions



Esquationf Motion Vanishing of curvature Ff 0

Vanishing of Torrio Tfn D

Differ can be written as translation rotation
in 3D gravity

Symmetries
Rotation in the internal index

Diffeomorphism
Translation

Translation characterised by scalar field with
one internal index Ni

En ein D Ni

fewwin 0

He can cheek that the Action is indeed invariant

Canonialysis
Hamiltonian analysis

chose a slicing of the manifold
It IR X Z Z is 2d surface

µ Co a spacial coordinate
Time components



Z is equal time surface

S Ife a Flu In d3x

Notation Use A instead of w to denote Spin connection

SB ein DaAo E
ab t e o IF Iab

AoiHaebjts emAdaEbm Iab didt

Canonical pair ofvariabkagsq.ffgwspfialxl.Ebnlyl78in8t.a oh y Cheramiedont
have time
derivati

Ea gqgsyp.gg Eab e i b Dentritzed Triad term

so the constraints are

Fi Iz FIa E
ab

G
J
Iz Tabi E

ab

Fi Iab GopiottzsineAka pg
fH int

generate translational
symmetry

Gi JaEaj tq.me Ala Eam hairnet



Hamiltonian

H Jdk Nif ni ly

Totally constrained system

Reference i ROMANOS article leanonical anyalsis


