Quantum Gravity Choaib Akhtar	
Lec 1: Introduction and everview by Bianca Ditrich on different Quantum Gravity approaches.	the
different Quantum (Wality approaches.	
For now, no experimentally aversible situations	
Feletman (proton-electron) ~ 10-10	

SU(1) XSU(2) XU(1) Standard Model.

Ovantum Mchanius Francework. Creneral Relativity.

Open Problems: (i) Dork Matter
(ii) Unification
(iii) Unification
(iii) Quantum (wavity) Telated.

Quantum Gravity = Quantum + General Relativity

Quantum densiption, Le have levels of energy.

On outs like repulsive force to prevent singularity.

L planck =
$$\sqrt{\frac{\pi G}{G^3}} = 1.6 \times 10^{-35} \text{ m}$$

- OR, Compton wouldength: $\lambda \min_{m \in \mathbb{Z}} \frac{\hbar}{mc}$ OR, Schwarschild radius: $R \sim \frac{m G}{c^2}$

Quantization

Classical

$$\hat{H} = -\frac{t^2}{2m} \nabla^2 - \frac{1}{4\pi\epsilon_0} \cdot \frac{e^2}{8}$$

Sled magnetic ford

> Standard Model.

Crawitz

? Auantum Oxavity.

Perturbative approach: gav = n ur + har with /har/<</

.... String Theory

· Log Quantum Granity. (Dirack Appreach, combinal affordion)

OR (book ground indepence, Justield)

BM (Uncertaining Primiple)

Theory of Dunntum Cwaring.

· Simplim-Nibert formulation (1915)

· Ashtekar Formulation (1986) (gravity looks as Yong Mill theory) in this language.

S= I STRY Soly (E; Na + NEijk E; E; Fab + Zi(Da Ea)i)

V: Boxbera - Immirzi parameter

 $\{A_{A}^{i}(x), E_{J}^{i}(y)\} = 8\pi 6 V \cdot \delta_{b}^{a} \cdot \delta_{J}^{i} \cdot \delta_{J}^{2}(x-y)$

com use loops to measure cur vature, so called Loop Quantum Gravity.

A Spin Networks: basis of the Kinematical Hilbert space of Coop Quantum Grawity.

* Carlo Roveli.

 $\text{him Lplanch} = \sqrt{\frac{\hbar G}{C^3}} = 1.6 \times 10^{-35} \text{ m}.$

& Spin Foam Framework:

Transition amphibude between spin metwork state of LOG.

Creatity = Space Time

Ouantum Gravity => Quantum Space Time.

Quantum space? Back ground

Ouontum time? for OFT.

Top Down Approach

find theories consistent with what we know.

(larger scale to smaller scale)

Bottom Up Approach. I make an inhistion about Durchun Crrowity; and then show we do get the large scale physics what we know.

exil Pop Down approach (Asymptotic Safety)
- Takes OFT imput

ex! LOG: standard tool of Quantization.

applied the Space time Geometry.

"Quantum Geometry"

A Rottom Up Approacher.

- · Courd cets.
- · Caulal Triangulations.
- · Non Commutative Spacetime.
- · String Theory.

Quantum Gravity Choaib Akhtar
Lec2: Constrained systems and Mamiltonian Jornalism: Gauge Symmetries.
3D Sulideon growity with zero Cosmological Constant.
· Comprisal formulation of Constrained systems. · Crouge Transformation.
At help one me interested in "Constrained System" $\equiv 01$) At Can me relate constraints / gauge symmetries. $\equiv 02$)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
ein me indices i =) internal (Triad) indices)
Triad/connection.
Constraint on phase space: $(x)(av; pi) = 0$ * constraints hold at every imstant of time in the evolution of the system.
This means; constraint is conserved quantity.
Q2 Conserved Quantities (?) Symmetries.
Lagrangian formalism: Symmetry Conserved quantities (Neether Theorem)

Symmetries { global gauge : local and non-trivial transformation of the fields. local > gauge transformation do not affect any boundary value. Mon-trivial of act non-trivially on extrema of action. Initial Lion
Confriguer ation These the envoluetion are physically equivalent when they are related by gauge transformations. A Read on Gauge Trans permations

Review of the Hamiltonian Formalism $S = 2[q;] = \int L[q;, \dot{q};] dt$ $P_i = \frac{\partial L}{\partial \dot{q}_i}$, $H(q_i, p_i) = p_i \cdot \dot{q}_i - L$ $\mathcal{S} = \{ \beta, M \}$ {qi} > Configuration space {(9i; p;)} - Phase space.

 $S = /[\sum P; (av;, \dot{a};).\dot{a}; - H(Pi, av;)]dt$ Associate with this symplectic structure in terms of conjugate variables.

(avi, Pij = Si: Time Evaluation: j= es, nz : Flow of Hamiltonian. Any phone space function can generate flow Marritonian formulation for a constrained system. is not importible, then > $V_{\alpha}(\alpha i, Pi) = 0$ Primary Constraints. Primary Constraint surface.

(all the physical content of theory be here) H= Ho + Ux Yx

Add countraints in terms of

Multiplies M Lagrange Multiplies nd. 2 8: M3 = (p, H0) + (p, U~ Ya) = \P\No] + \S, yd } \\ + \{P, \\ } U^ Jero en constraint surface because of $\sqrt{\alpha} = 0$.

 $\frac{\sum x^2 ||}{\sum ||} = \frac{1}{2} m (v_1 + v_2)^2 - V(a_1 + a_2)$ V(a,p)= P,-P2 -> Primary Constraint. $\Psi(\alpha, p) = \{\Psi, \mu\} = 0$ so done with constraints. Now to interpret these constraints? Change of Variable: $Q_1 = ov_1 + ov_2$ $Q_2 = ov_1 - ov_2$ Lagrangian only acts on Q1, not on Q2. Symmetry? 80 = u = u = u = uu = larg range muldiplier. $\delta \omega_{\mathbf{r}} = u(\omega_{\mathbf{r}}, \psi) = -u$ $S(\alpha_1 + \alpha_2) = S\alpha_1 + S\alpha_2 = 0.$ $\delta Q_1 = 0$, but $\delta Q_2 = 2u$ So; Q, is physical quantity. Or is "internal" degree of freedom. Constraints: primary, secondary,; first class, second class. Distinction between 1st dans 12nd class:

Consider a system with constraints Tox (all constraints; primary, secondary...)

* First Class: Ib there is a subset of constraints fa whose brooked with all constraints weakly vanishes,
whose brooked with all constraints weakly vanishes,
i.e. $\{ \varphi_{\alpha}, \Psi_{\alpha} \} \approx 0$
The way allow first show sport raints.
-> No grestriction on associated Lagrange multiplier
Then the parameterics on associated Lagrange multiplier Hen the parameterics of the p
Second class: Remaining constraints denoted by Xm,
Second class: Remaining constraints demoted by Xm, then the sub-matrix defined as
$\Delta mn = {\chi m, \chi n}$ is invertible.
X n are called 2ml days constraints. Sorresponding Lagrange multipliers are (reakly) fixed.
let C'be one of the contraint.
So {e, H}=0: The flow generated by M of C is zero (at least healt)
or real as &H, C3=0
The flow of H generated by C is zero.
and this is what he call Symmetry

Constraints & Physical degrees of Freedom.

Kinematical Phase space.

Physical or Reduced Phase space

Crauge Orbits.

dim (Kinematial phase space) - # (1st days) x 2 = dim (physical)

herause of dividing by Groups orbit.

Quantum Gravity

Choaib Akhtan

Lec3: Examples of parametrized particle: Comonical analysis, Physical phone space & Dira observables. The Dirac program: case of the parametrized particle.

A totally constrained system - example of the parametrized Particle.

Free mon-relativistic particle in 1d.

$$S[Q] = \int_{t_1}^{t_2} dt \cdot \frac{1}{2} m \dot{q}^2 \qquad ; \dot{q} = \frac{dq}{dt} \rightarrow \alpha(t) = \alpha(2) + \frac{p(2)}{m} (t - 2)$$

t independent variable

So [
$$QV(S)$$
, $f(S)$] = $\int \left(\frac{1}{2}m \cdot \frac{QV'^2}{t'}\right) \cdot dS$

So is invariant under $s \rightarrow \tilde{s} = f(s)$.

Comprised Analysis
$$P_t = \frac{\delta C}{\delta t'} = -m \cdot \frac{\alpha v'^n}{2 \cdot t'^n}$$
, $P_{\alpha} = \frac{\delta S}{\delta \alpha v'} = m \cdot \frac{\alpha v'^n}{t'}$

He have a primary constraint C
$$C = P_t + \frac{p_{ar}^2}{2m} = 0$$

Mamildonian of the: H = Pt. l'+ Par. ar' - L system

$$\Rightarrow \underbrace{H = \frac{t' \cdot C}{}}$$

Totally constrained system; Mamiltonian is proportional to constraints.

Physical Phase Space: Dirac Observables
Gauge orbits of phase space variables generated by C.

$$\frac{da}{ds} = \{av, C\hat{J} = \frac{pav}{m} = av(s) = av + \frac{pav}{m} \cdot s$$

$$\frac{dt}{ds} = \{t, C\} = 1 \rightarrow t(s) = s + t$$

Treating or & t an some booking.

$$\frac{d\rho_t}{ds} = \{\rho_t, c\} = 0 \Rightarrow \rho_t = -\frac{\rho_0 r^2}{2m}$$

F is dirac observable

To construct a physical observables:

· As many gauge fixing as constraints. 大(s)=て

a) Find a representation of the phone space variable as operators acting in the kinematical Hilbert space of kin satisfying the standard commutation relation:

 $\{\cdot,\cdot\}$ \longrightarrow $-i/_{\uparrow}$ $[\cdot,\cdot]$

- b) Promot the constraints to (self-adjoint) operators in H kind c) Characterize the phase space of solutions of the constraints -> Inner product of phys.
- d) Find a complete set of gauge invariant observables.

Case of Parametrized Particle = Z^2[IR2] functions depend on or At. (a) \$1 kim $\langle \Psi, \Psi \rangle = \int dq \cdot dt \cdot \overline{\Psi}(q_{r}, t) \, \Psi(q_{r}, t)$ Y (ar, t) Kinematical Inner product. $o_{V} \longrightarrow \hat{o_{V}}$ $\hat{\alpha} \Psi(\alpha, t) = \alpha \cdot \Psi(\alpha, t)$ $t \longrightarrow \hat{t} \qquad \hat{t} \Psi(q,t) = t \cdot \Psi(q,t)$ $p_{\alpha} \rightarrow p_{\alpha}$ $p_{\alpha} \Psi(\alpha, t) = -i\hbar \cdot \frac{\partial}{\partial \alpha} \Psi(\alpha, t)$ $p_t \longrightarrow \hat{p}_t$ $\hat{p}_t \Psi(x,t) = -i\hbar \frac{\partial}{\partial t} \Psi(x,t)$ (b) $C = P_t + \frac{pq^2}{2m} \rightarrow C = -ih \cdot \frac{\partial}{\partial t} - \frac{h^2}{2m} \cdot \frac{\partial^2}{\partial q^2}$ Co, the equation becomes $\frac{214}{20}$. This is just Schrodingers Squation. (c) Yphys (a, t) = exp(-\frac{1}{15} ht) Y(a) $\psi(\alpha)$ initial have punction $\psi(\alpha) = \psi(\alpha, t=t_0)$ $h = -\frac{1}{2m} \cdot \frac{3n}{30n}$ Inner Product

Inner Product | < \(\psi \) \(

J/phy = L2(1R) Physical Inner Wodet. $\langle \Psi_{\text{phy}}^{(1)} | \Psi_{\text{phy}}^{(2)} \rangle = \sqrt{\Psi_{\text{phy}}^{(1)}} (t_{\text{fixed}}, q_1) \Psi_{\text{phy}}^{(2)} (t_{\text{fixed}}, q_2) dq_2$ Mere me dont integrate over it variable. $\hat{O}_1 = \hat{A}_1 - \frac{\hat{p}_{\alpha}}{m} (\hat{t} - t_0)$

(d) This independent observables:

Le con show [ô,, c)=0, [ô, c)=0

Quantum Gravity Choaib Akhtar Let 4: Actions of gravity; The Sinstein-Hilbert action-3D gravity - first order formalism of 3D gravity
(triads & connection) Actions for Granity. $S = \frac{1}{k} / R \cdot \sqrt{g} \cdot \lambda^3 x$ Einstein-Hillsert action. $\Rightarrow G\mu\nu = R_{\mu\nu} - \frac{1}{2}Rg_{\mu\nu} = 0$ $R_{\mu\nu} = 0$ (for dim(spauline) $\neq 2$) Prodli of Rapin valence. $RM_{y} - \frac{1}{2}R \cdot g^{\mu}_{y} = 0$ let D = dim (spacedime) $R - \frac{1}{2} \cdot R \cdot D = 0 \qquad \Rightarrow \qquad \left(1 - \frac{D}{2}\right) R = 0$ for D = 2 = 0 $\Rightarrow \quad \mathcal{C}_{\mu\nu} = 0 \quad \Rightarrow \quad \mathcal{R}_{\mu\nu} = 0 \quad \text{for} \quad \mathcal{D} \neq 2.$ $R_{\mu\nu} = 0 \implies R_{\mu\nu} \times \delta = 0$ in 3d spoutine) antisymmetric in 1st thus in dices. Station $\Rightarrow \frac{n(m-1)}{2} |_{m=3} = 3 \text{ pairs.}$ beroupl in 3d; Ruv & • antisymmetric in last the indices $\frac{m(m-1)}{2}|_{m=3} = \frac{3}{2} \text{ pairs}.$ RANYS have Same no. of degrees of

ree dom.

· Symmetric under 1st pair & 2nd pair. so; $\frac{m(n+1)}{2}\Big|_{m=2} = 6$ independent components in \mathfrak{M} . Russ: 6 independent components in 3D. 3D grawity = Topological Theory
(no local degrees of freedom) * Le dont expert graviton field in 3D.
beraule me dont expert local degrees of preedom. A Topology of the monifold is characterized by the Fundamental group. In 3D, M= IR x Z ≥ is 2 d surface. The topology of 2d surface is very well classified. Orientable surfaces are holomorphic to sphere 52 or to connected sum of 9 tori. g = genus of the surface. $g(S^2) = 0$; $T(S^2) = 0$.

First order primalism of 3D growing.

 $g_{\mu\nu}(n) = e_{\mu}(n) \cdot e_{\nu}^{i}(n) \cdot \delta_{ij}$

At each point we raise or honor mad frame

In 3 dimensions e'u(x) are called Tetra d.

In G, Quatriod.

In 3P gmv = e'n e'n bij

3mi hors 6 degrees of freedom.

for (e'n) he get a degreer of preedom.

So me see that from going; from metric to triad. he had introduced some irrelevant informations.

So he Additional Crouge Symmetry.

 $e_{\mu}(x) = R_{j}(x) \cdot e_{\mu}(x)$; $R \in SD(3)$ So; me get addition SO(?) gauge symmetry This transformation keeps the metric unchanged. Instead of the metric, he can work with triad. Spin Connection // transport objects with internal indices and also to ensure the proper transformation behavior under internal rotation for the covariant derivative of objects with internal indices. Spin Connection. Wink Du i, k internal indicer. M spacetime index. \$is vertor for internal indices, and scalar for spacetime index Du \$ j = Du \$ j + wh k \$ k $D_{\mu} \phi_{j} = \partial_{\mu} \phi_{j} - \omega_{\mu} \phi_{k}$ $\mathcal{D}_{M} \mathcal{V}_{\mathcal{V}}^{j} = \partial_{M} \mathcal{V}^{j}_{\mathcal{V}} - \Gamma_{\mathcal{M}}^{\mathcal{V}} \mathcal{V}^{j}_{\mathcal{V}} + \omega_{\mathcal{M}}^{j} \mathcal{V}^{k}_{\mathcal{V}}$ Check the devisibility of a scalar; $\mathcal{D}_{\mu} \phi = \partial_{\mu} \phi$ It comes out to be ordinary partial derivative

Derivative, My ; motation used V_n Covariant (loui conita compution) Compatibility Condition: Duc'y = D This condition makes sure that · Derivative commutes with the contraction. = e' Prej -e' drej

Spin connection compatibily determined by T, e. Proof

Conversely, he can also define a connection using (x) become its invertible. Thy = e ; wink eky + e; on ey Condition on w / P = P? the impore metric compatibily & torsion free on R. Whih := Whik' Sli Metric Compatible: Vu gg, = 0. He know $\widetilde{\nabla}_{u}(\delta_{ij}) = D$ SO; \(\nabla_{\mu} \left(e^{\gamma}; e^{\gamma}; \quad \gamma_{\mu} \left(e^{\gamma}; e^{\gamma}; \quad \gamma_{\mu} \right) = 0 Now we use metric compatibility. $\nabla_{\mu} (e;es;g_{yp}) = -\omega_{\mu j}; -\omega_{\mu ij}$ metric combatide Antisymmetric So; we show that $\mathcal{D}_{\gamma}(\delta_{jk}) = 0$ =) Also metric compatible.

Torsion FREE Condition of T W is also Torsion free. ie: $T_{\mu\nu} = \partial_{\mu}e^{i}_{\nu} - \partial_{\nu}e^{j}_{\mu} + \omega_{\mu}ke^{k}_{\nu} - \omega_{\nu}ke^{k}_{\mu}$ Remark II Ist order formulation, we will use $\omega_{\nu jk}$ (antisymmetric im j and k) but where Torsion does not vanish appriori; but vanishes as Equation of Motion.

Quantum Gravity Choaib Akhtas	
Lec 5: First order formalism of 3D greauity: action & symmetries, Camonical Analysis.	
Assume (2) is antisymmetric.	
ble ment to write Rieman Tennon. as a function of anti-symmetric spin connection.	
$R_{\mu\nu\rho} = V_6 = (P_{\mu} \nabla_{\nu} - \nabla_{\nu} \nabla_{\mu}) V_{\rho}$	
$=e_{\beta}^{i}\left(D_{M}DV-DVD_{M}\right)V_{j}$	
$V_{\beta} = e_{\beta}^{i} V_{j}$	
So; Rung & Ve = ep. Funjk. ek. Ve	
Curvature 2-form of the connection co.	
Furjk = On Wrjk - Or Wrjk + Wrjh Wrlk - Wrjh Wr	k
In 3D enforce the antisymmetry of Wrik, and of Furik by defining.	
Whik = Silk Wh	
Furjk = Sjak Fur	

Six totally antisymmetric; Sing=1

Dijh are also the structure constant SU(2), sol3) Lie Algebra. $\mathcal{D}_{ij} \phi_{j} = \partial_{ij} \phi_{j} + \mathcal{E}_{jkl} \cdot \omega_{ij}^{k} \phi^{l}$ FMV = DMWly - DyWly + Elik Wnj Wnk Curphure form Thu = July - July + Elik Whileh - Elik Willak
Torsion
form Sinstein-Kilbert Action: in terrors of Stort with S= I Sog. R.d?x R = RMV 9MV = RMEV 6. 9MV Note 3 = | det (e;) | = | det (ei) | -1 det of cotriad. det (ei) is determinant of triad. > Invariant under · Rotion in internal $S = -\sqrt{621} + \sqrt{(3)} \cdot \frac{5}{5} \cdot \frac{1}{3} \times \frac$. Translation In this formulation we can couple fermions with beight 1. > "BF" action. (Topological Theory in any dimensions)

Equation of Motion: Vanishing of cour vature Fir = 0 Varnishing of Torrion The = D Diffeo can be witten as translation & rotation in 3D grawity. Symmetries: · Rotation in the internal index. · Differmor phism. · Translan on Translation characterised by Scalar field with $\delta^{\tau}_{N} e^{j}_{N} = D_{N}N^{j}$ 87 W = 0 he can check that the Action is indeed invariant. Camprical Analysis Hamiltonian analysis. * chose a slicing of the manifold. $M = \mathbb{R} \times \mathbb{Z}$ Z is 2d surface. [Spain coordinate) $\mu \rightarrow (0, \alpha)$ (Time component)

Notation We A instead of w to denote Spin Connection.

$$S = \int e_b^j \partial_a A_{oj} \tilde{S}^{ab} + e_{oj} \frac{1}{2} F_{ab}^j \tilde{S}^{ab}$$

$$\{A_{\alpha}^{j}(x), E_{k}^{j}(y)\} = \delta_{k}^{j} \delta_{\alpha}^{b} \cdot \delta(x,y)$$

Comonical pair of variable

$$\{A_j^i(x), E_k^i(y)\} = S_k^i S_a \cdot S(x,y)$$
 $\{A_j^i(x), E_k^i(y)\} = S_k^i S_a \cdot S(x,y)$

(because don't have time four time derivative $S(a_0, A_0)$)

 $\{A_j^i(x), E_k^i(y)\} = S_k^i S_a \cdot S(x,y)$

(because don't have time $S(a_0, A_0)$)

 $\{A_j^i(x), E_k^i(y)\} = S_k^i S_a \cdot S(x,y)$

(because don't have time $S(a_0, A_0)$)

So the constraints are;

Mamiltonian:

 $H = -\int_{0}^{\infty} X \left(N^{j} \mathcal{F}_{j} + N^{j} \mathcal{G}_{j} \right)$

Totally constrained system.

Reference; ROMANOS article (camonical anyalsis)