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Continuum Description
Classical Mechanics Continuum Meehan's

L 9amaim t L qu 94 2,4 t

is continuous parameter

Examined Discrete system continuum limit
I D string between walls

Is 49min08 8 0 40 Discrete Counterpart
j o It 2 3 N I N j net of heaveSovnation
1 L I

ffincatterinexitTTeauequationsolutions arewell known

Tells about movement of soy string

L

yJ

I tm



jk Dx
2 is potential energy of spring in terms of stretch

DX

Assume only longitudinal elongation

length of whole chain L

do unstretched lengthof the Hookean spring
A spring length at Sopuilitorium camion

Njan ja Equilibrium position of beads I j e 2b

we have total Ntl springs

so Ntl to Lo unstretched length

for simplicity take to E a Chlotmion or compression
in stringat equilibrium

Using newtons low No o Nn EL
m in k Ny Nz k X s n z

He will try to do this by Lagrangian

Now we disturb the string
Nj n Cen t Nj Ct

MzJEWj hz IE Mj Nj lot
kinetic potential



L my Ignis EFE Nin Mi5
fg

Mjg Mj to case

Cj that Njt ja Mj to

Njt Mj t a lo

so L E II nij Iz ca lo t Mj Mj

a earn length no motion but

string could be
stretched or compressed

so

L m
z.E.in kzECnj Nj t constant

The linear term looks like

I 2C a lo Mj Mj
2

k ca lo Mw No k ca lo L

L G Th
is also their
constant



Now we apply Lagrange's Gun of motion

dat Fn Ith
n weak

pffowpi.mil K Mj Mj Nj i squadron
of ofMotion

motion can also be written by just using Newtons laws ofMotion

Nij w Nj Mj Nj i
w JEm
morn
j

mini k Cmj a Nj h Mj Nj
k Njt 2Nj t N j i

next
I

in our microscopic model

M k a are microscopic quantities
Continuum limit C N a

Whole string has mass M

Youngs Modules Y J
Maeronopic quantities

length L
C finiteguardian



The connection between Mik a with M Y L is with N

MN M a N L for equilibrium
to N Lo forunstretched

Ky Y Need he derive

This tells k YN

finite
so N a k so

A Mat
N

so a m o for N

but ka N so k o for N x

divide com by a

Mq Nj a tea Nj 2 Nj Nj i

ma µ mass density My finite quality

M Nij a aka Nj Mj Mj i

In the continuum limit

Nj Ctl Mex t ie at everypoint
n we haveparticlej E 2



ie MxCH Next
X EIR

chitinais MIAMI
Minx.tt ka

a
Ma.rij kalmj.ie 2Mt Nj CH

a

Njt Mj
a

in continuum limit
it becomes spatial derivati

double
N x

derivative

uiicx.tl Y N cx.tl

c YI ie Cre Yy nothing
to divide

Youngs Modulus's rea
OIA Atfstrain

k Chiti Nj ft no
area

Mj ie Nj in Id

a strain line
So area

Youngs Modulus ka y ka shof.info
to



k I ka N
a

N N

m 0

a o

smh that Na L mN M finite

forward derivative Backward Derivative

N'j Njt Nj Nj Nj i

or
a

Here we are using this
Boulevard Derivative

while defing first
derivative

while writing doublederivative we

used forward derivative

197 If Niazi
using forward derivative

Nj N'j
a µ using forward



Nj 12 MsH ng ti Mj

Nj 12 2mg't t N j
a

In continuum limit we could shift partite by
1 because there are a particle

Njie 2Nj t Nj Njt 2Nj Mj i
an

This is more symmetric

definition
So we work withthis

B Radward derivation f i Forward derivative

for double derivative we could use

BB FF R fB

all equivalent in continuum limit

I E it kz o
Chit Nj

should be finite quantity

Elma Enif Kaz niti ani 5
Taking continuum limit



L ajgfm.ncx.tt 4 defeats

a is actually DX

so The summation becomes integral

L DX E E In sit x ti Y 49

Jdx LIAN CHI Iz 1 17
Lcn Na N t Lagrangian daily

n E Fff
L fdxL.cn ni int

L If Nati ten cx.tl
X t are independent variables

3 off 3 diff
theorem t are independentvariables



if Nutt t

Then dm In
at

but for NEH dff III
dir
DT

II
2x

L JLCNxH N It dx

In Continuum Limit

Ifor oi t L Mex.tl n int

j n

Ajit NCx.tl

oi HI off didnt

Car ast L N N Nix t
t x t

daff.fi ffrdafFE tfxtffn ffn
Lagrange's Equation

Sulerbyrogequations
can bederived

we have f E in Izmir Mii YM 0 Wagon
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L 1
Recap woman 0 10

a I en mj Mio H O Wht
position of

mrij KIM ja 2 Nj Mj i spring

Mj are deviation from equilibrium position

Nj injun't Njit ie Nj Nj.cn E NjCt

If we have friction in the medium then after long time
the particle will comethe rest at positions n'go

n'Y ja
Continuum limit µ JINX H Y 2224 t

m o N suchthat MN M µ L finite
a o

spring coutat k ka Y finite

a end KEN

LIN ri N n t Lagrangian Density

Here Lenin.nl n t My th Iz 2 1 att

Na explicit n and t dependence here

Mx HM Nt 7th Natalie.nl



Analogue of L earn in discrete particle dynamics is called
Suter's Lagrange's espn

F Iff t daLIF fan E L Suntan

Using the L H the E L err gives

main Yair
Canhave different boundary conditions

No t O N L t

Boundoycondition

F O X L

4

No H O

11 5
O

mirin h NN Nn i

ka it
a

More general situation
F O X L

f mirin ka Morane tf
Melo H O



mirin Y ddI t F continuum limit

mirin 0 in continuum limit if m o

so y dr
dx L

f 0 Boundary
condition

F Y dd

E FT

Individual Mj are microscopic quantity

so difference is also microscopic

Njt Nj microscopic

microscopic

he can be finite

but for Tin we dont expect this to go infinity

forthis to go to we need infinite force

so we dont expert In 4 Tin to blow up



kMj Nja a the Njt Nj
jfm.jo

0
j 11

for last particle affammon
No mass at right

14 NIH E Ansinknx eat

Mii Yn sinkx eat hunt ten n

µ x Yk t An i II kn

Soi MAH EAnsin knx
i kn t

using boundary conditions we can find Am's

and hence qcx.tl is obtained

Discrete

Discrete Lagrangian
team

F0M

continuum limit continuum limit

Lagrangian wave equation

Density
E Learn



Continuum limit

t n t

j l n

qjltl mcx.tl
Ij LH 1 N N

Principleoftenstadion
orH Ii

on

te
I't

a
e I Ilario Hdt Action

t to

which path gets will extremize I

The physical path or

I Carini t is a functional depends on gas

let gits be the optimum palm or the physical path
then we consider the deviation

gits get SqCt

SI I I should be zero

JI OCE 2 t O E

8 0 as E o Thethftremitm

path



SI AE t B Ent

EI A BE t

in limit E o II I o

A

so for the path to be extremum we will

need A D

fad
x E fCX t Ef CX t C 2 f

I

t fCX
tE f x It C f Xx 1

This has to be
zero

q art for Liq L or 1dg
act

A 4 Hat of Lia dt
ar

I giftI q path tr
ar path

doingthe analysis in pathspace

Joy It D for Cta Snd point variations are

fixed

Joi Idffor a or da



Actually

oh f Haidar ai t da H L la ai ti It

IW.tt ortfooi a.atDae

ftfffratEoiJde

ft'for yea Ita da daff say dt

Nok Itt off So fatsdart

It 8 f h fH
O

SI It or ft da fat
81 0 fat dalfat 0



Note I oh f Cx 0

More we could conclude because of 89

and the deviation 8g is arbitrary

so 81 0 It for arbitrary

so we get fat da ft 0

eat 8gal n

t t t

Derivation of Euler Lagrange Gunlion

given L Mex ti ni ri x t Lagrangian density

L Ldx L Lagrangian

L Lagrangian density

Action JL dt JL dx dt I

Need to find SI



t
tr

ti
on

h n X

Surface Next changed to Nat t 8NCX.tl

Manti Mex ti t 8nlx.tl
81 0 N Cx t

JMCx.tl O ie doris gene on
boundary of
integration

ie I 1dxdtL
so 8N Ige 0

SI fdxdtflfhtdn.ntdnsn.tn Leninism

fdxdtffln.nsnl rfdnsn fdn.cn rfh.n 8ri

Leninism
we are doing doubleTaylor expansion



Notation dnt daySq Sir daSq
SI fdxdtfzdndn 2I.cn t3nISn
Nole we also have terms like
22L
pion dir t but we dont keep the

higher order terms

so

SI fdxdtf2Izndni 22n.cn i 3nSntOC8ND

fdxdt ftp.dntfffffn oh da fifthJohn

da III on da Iff on
f

00h43
similarly this termfdx ftp8n drops out after

a
integra

o

doing jut At integral



SI fdxdt.sn Ldn daffin da Ifi 10 On

dnlx.tl is completely arbitrary

so 81 0 fin daff daEffa o

Auation L N N N X t

L Cri ri ni
when we have higher order derivatives



Homework ContinuumMechanics Shoaib Akhtar

Given dtl dimensional spacetime

M E fo l 2 d

limitndexTspatial index

Given the Lagrangian Density

L Neo 2in 22in 2 In Jam xn

we write theaction

I CNT fL ddHn
I is the spacetime
region over which we

r integrate
Finding Generalized SulerLagrange equation

Ashton s t.SN gr
0

under this infinitesimal transformation lets find
the change in audio 81

E fffh iffnmm IE.mn
21 Shum a ddth
Mmm few

Noemion
Nmm.y.IQ.fui fy.MYp



SI Effort fn I 8Mm nu ddt'n

r

consider the piece

I z i Shu
a

dd n

Ifan affinisnm 2mfh sun damn

r

12mL Mm a
ddttn fdmfff.in 8mm old n

This becomes the boundary
integral over 2 r

so it vanishes

it 8Mm µ Ig O

fan fff.EE dm n Mdd n

we again re iterate the steps



c hiJanani In 21
24 n

82 old'm

Using this we get
A Q us 2n2n Jay

SI ffffnf.EChi is gFf dn.dd n

r

under the restriction

IN µ µj I zr O where j c I N I

and
8µg 0

so 81 0 for such arbitrary 8N
gives us the Generalized Euler Lagrange Equation

If II A o
J Ny Mj
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given Lcn.nx.nt.x.tl ftp.Jidz If
3InLE.l2th5 Iz2x25

Independent variable n t

we could have n y z t Nm M 0,1 2,3

ELI.tl Bix.tl Rt Nm

f n

te i'il
Nn n y 2 it fate 2h2m

notation Mµ JI Ifor now dontdifferentiate
2W between contravariant

covariant

Nu N t N S stands for the components ofthe field N
f L 2,3

ie M is like E

EI END M E

Ng a e Eg

for each f we have Euler Lagrange equations



for each S

E Inf a IT s stand for
components of the

M maker
µ n t

2mg when L MsMsmNOTATION Mf µ I

L M Mx Mxx
i i

If term comes

on tht

L l M ohxx

expanding gives

3nFMxx dalff.mx dxdG2F dnx

L
Thisherones boundary term
after integral
beam it give nI SU poundory

The D on boundary

aftF.vn aEnEorni daEl3f 8n
becomes boundary term after integration
vanishes 81 0 on boundary



so The extra term we get is

Jdxdt f day find
i 8h

fdxdtf.EE daffy adf.CI Jdm o

This is zero

If daEE 137.1
Goldstein

N Nt SMH I
Met a.HN

SMH _x fan
small number

I If Functional

EH Icf ff dx

we want to find 8 gun
fan

This will be some functionof n

x
in L N Mx

2 Nt Smx



SICH him I f Six x'I fix dx
TE C o E

d
changing by small

amount at a point n

definition of fumlional derivative TIED
off allneglect

f.info dxffht2Efcx1.8cx xii er.dTx xi7
fJfocx

xi7dx I

x xiDdx focx xhocx xddx
o.co

so Jer Efx x dx E 2810

12.824 xDdx E Sco

firm E 8107 O E is stronger 0

as compared to 8107 being
infinity

choice of E is arbitrary
so make it arbitrarily small

so that C 8107 D

8IC 2 f Xt in SI
C 2 fCH



7 tigon ICHxlteaex
x.IT xDJhd.mqY

ExampletJ I ff dx 8f 2ft xD

Exempted I dx ff 2 d afCx

IC ft C Fx xD J fast C fix xD 2dx

JI day fix c Six xD data dx

J Cf'd c 8 x xD f'I 7 dx

J flex t c48 exHD2 2ft Eda Xi

flex 5 dx

J C 2 oryx xD t 2 e f CX 81 x x dx

ff y JI J2 f al d Ix Mdx
2 flexi 8Cx a It Cx fix xDdx

2 o 9 I

2 ctfu
dXm



Ig Cx 8 x ul dx GTX's

Ltr.mx x t
g ht dmII D

N Rt E fix x

of ffftfontffe.mxdxdt8MC 8Cx Xi

SI C Ife ax xd If oryx xD dxdt
e 37 da 12

EI Ffa II GF
ET EI p v 4 it Time dependent

2M Schrodinger equation

This equation follows from the Lagrangian density

L zhm BY D y't V 4 4

Hi Yi
current

term
Note here we have y Y

There are actually two degrees of freedom
4 Yr ti Yz Hn Yz independent



or
y a You e'NI These are two fields

Or
we can also think of y y as independent
degreeof freedom
It has 2 degrees of freedom

4,4 1
a

c Yo N
4 R YI c

They convey some information

y't dz IF da Ift _IFFY'Ffissient
Schrodinger

equation

Y dafffen da Iff If This gives
complex

conjugate of Time

dependent Schrodinger equation

Exampled Electromagnetic field Lagrangian
E B

D BxB E Bol EEE
He construct a Tensor quantity Fm



Fm Zu Ai 2 An 1Antisymmetric

ZµAv Am

I CF io

four vertor

L L Fm Fm
hc

era f on
ie

IE O

Spuationfor µ component of A four vector

127 IF
This is zero here

so da I a o

gives Maxwell equation for
zero current zero charge case

we get JnFm o
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symmetries of L

symmetries of L lov ai t L t F Car t L

This keeps L corn unchanged

ie DII 2 is satisfiedJai

7 has an additional term

f metIT DT Za ft IIA'd dependent
explicitly on

Fai CEE It Efi ai

L
is independent of g

o If fair
TF
Fa

da fig extra term from LHS

we can show that the RMS will also generate
some term

For f



It can be shown

dat IIe Za dfa when F is not dependent
explicitly on ai

Variational approach

I i at f at f d dt

L dt t FC FC D

I I FC FC

This is extra term

when we do variation of I we keep the end points

fixed
so 8 FC I fC O

na

i
iz t

dat term is boundary term as far as the action is
considered

Energyconservation L Llov ai not explicitly dependent
on time t

Then something is conserved usually called Energy



ftp.aii ztzoi i 3
I

C L m

af off Fani If

da gta c 3
when L L or Q

so I
zt

O

da zroi L 0

Is This is called Hamiltonian

H 2 ai L

Analogy for fields Ngl
x yet

vertor component

Edda.IEfn7 3 L oh o

if 21 0
Tux 2 Xu



so's day Tux 0

ie divergenre of Tax is zero

Ten Energy Momentum Tensor

HEH Konno o Y Mex 5 1 only one component

t independent variables

f Tux O daTao do O

U Y E fo I

E n component

t Time component

Analogueof L L L

L L L t da F Sns 5 1

i

m

This is divergence
term

Fi is a vector of same dimension as the
space time



Tensors Rotations are linear Transformations

ps RAT
initial valor

rotation
rotated vector

Rates foin Yo
Passive Rotation most used one

Active Rotation

Passive Rotation

y
y A vector does not move

O
only coordinate frame moves

90

Object is not physically changed only the
coordinates are transformed

D Ax At Agf
In nee coordinate system

D Ax Ii Ay yn

D Aint Agg Ax Ii Aug yn



n coso nai simo f
ya since in cosayy

so's Anna Ayy Ax coso ni simog
Aylsino in

cosayy

Ax cosa Ay since I
C Ax since Ay cosa yn

so Axl Ax coso t Ay sind

Ay Ax since Ay cosO

Aa faff siu.no pAgyThjd'Itrarefor
ms

Consider the moment of Inertia matrix Iij
how it transforms

R Iij I'is R I i j R

where R is Rotation matrix

ie I RI R R RT

This is how a matrix for rotation
transform

matrices



General transformation rules for Tensors

A 3 3I 3 n 3 f AMPminp

if m n p 1,23 Then Tmf has 23 8 terms

ni Ii coordinate frame transformation

a
i Ii Xm

Rank D are scalars 0 451 01 1

Rank L are vector A i zxm Am

we know that under rotation vectors

transform as F RA
R 2 im

ie A 3 Rim Am 2

Iii in 2 Im

For Rotation is 3
Rfmatrix T pi camera

matrix

Rij I takes unprimed to prime



R ji 2 takes primed to unprimed

RijY Rj R 1 ji

so I RIN W

Ii j Rim Imm A nj

IIimann 3
but Jin III

Zin

Soi Iii 2fm Imm re Rotational

transformation of

moment of inertia
is compatible

to

rank 2 tensor
transformation

property

Contravariant A
k

zxm 3x n 2 AmnP

covariant A i u 3777.3 Amnp

Mixedtensor Aidk 3 hr in 3xIph.AmnP



sxampleofcovariantueitor

B i zfg.CN This transforms in covariant way

B 20dm Sime 0 1 7 is scalar

2n i so's 0 1 7 0 151

B 2
J n i

if a water fi 20TH 2xm
zxm.SI i

20 1 7

F
ZIM
2x i

B i III Bm
Jatin'thtold B transformation

new B
rule

upper index Contravariant
lower index Covariant

Convention

Bij A i does not follows transformation rule of
rank 2 tensors

not tensor in general
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RotationMatrices

0 Rij 3I ai R Rt 37 3

Isotropic Aij X Sij does notchangeunder rotation
under rotation

These types ofA A RAN matrices are called

if A is isotropic Isotropic
Then A R X I RT X RRT X I

A XI p A A

stress

Giggs Isotropic
Stress

Ej p S ij p premiere

pressure is isotropic normal to surface

x

we know that if Aijn is

t tensor

Eijk
then

what is transformation A'ijh ZYIm.dz n7fxIpr Amnp
property of
Levi Carita
It is actually pseudo tensor



Eiju does not transform exactly as tensor
fully antisymmetric art any exchangeof indices

Eijke fiery feign Any pair weechange

get us negative
sign

Eijue is eh il j U dijk

Eva
3111

so Eijhe Eeijk

ca cyclic change maygive sign change if
even of

indices
b Eijue all indices have to be different otherwise
it will be zero due to fully antisymmetricnature

c Third Rank Levi Cevita Eijk
Eijk 3 of elements 6 non zero element

27 elements

declare atfo.TL are L5 J

Then the other components are fixed 3 of Prem
ie Eye Ears I etc is I

3 of them isC i z 0 etc I



Ax B i Eija AjBu
Determinant

A
am an air

law aai

I Al au au ans 923 Asa Air Cars933 923and

tan car a zr areas

can be written computty in terms ofwww.ifa

I Al Eijad 92JAsk

IAI E izz Ain922933 t

for NxN matrix A
we will have N terms in 1 Al

IAFdetCA Ei in Ali Aziz Amin

Eijk finn Ajhmm Ijm 8am Ijn 8km
sum over i

Einstein Notation repeated indices are summed over

Aside Contraction reduces rank of a tensor but it remains
a tensor of lower rank

Eonsider
Aij BJ showthat A'ijRi X Amn B



and hence we establish that Ai BJ is rank 1 object

A'i D 1,7 3 Amn BP
p

III 12 3 Ann BP
P

JI by chain rule2 XP

fffi.fi p.Amn.BP
2xm Snp Amn BP

2 Xm AmpBP

F H
AxB xc A c B CB c A prone using Levi Levita

Axp x i Eijn A x B j C n
C ijn Cg mm AmDn Cn
C ijn C jmn A m B n Ch

pseudoTensor

Recall pseudovector example A Bx C B C untors
then A is pseudo vector or axial

vector



Inversion reflations

Hy
t x x

L s v
y y

left handed
2 z

Tmfsion
x Parity

Righthanded Transformation

fareflution
None

y n Reflation

kiL y n

Inversion R Ito
Haha a g

ftp.qonorffoqo.meitg

R Rt
Improper Rotations

RR K I

R l hi RRT _I

IRRI 111 1

IRI INI 1

IN IRI I IRI't IRI I

IRI I proper Rotation matrix

IRI 1 improper Rotation matrix



given a vertov A Byc BIC are vectors

under Improper Rotation ie Lm y z C x y z

A f B xC C D x C

A remains Same

Then A is called Axial Hector or Mondo Heitor

B C are undvators
called Polar vectors

Change sign under inversion

Now we discuss more general element
Pseudo Tensor

Transformation Rule
let Eiju be pseudeetensor
It transforms as

Eiju Lal III 3I 317 Emnp
because of this factor it is not

truly a tensor

I al det determinant or Jacobian

of the transformation



Eijn C ijn under above transformation rule

if we want to keep defination of levi cenita
Same in

any frame
then we have to follow above traneformation

rule

C izz C231 321

Cizz Ez z C 32 I

Eijn Idl aim Ajm Ahp C mnp

I lat Aim Azn Asp Emnp
call at late I C123

Ezig lat Azm Ain Asp C mm p

w m m are dummy
variable

Tait interchange them

al Azn Aim 93p C nm p

lal aim 92m93 p C nmp

lat a m Azn Asp C mnp
C D l al lal CD la 12 1 1 CD I

C 213



psenator
A Bxc BIC polar Then A is axial

B C change sign under inversion

R dont change sign under immersion

axial polar x polar

polar polar x axial

axial axial x axial

PseudoTensors
IS Tensor of Rank I

Eiju BjCa pseudo tensor of rank 1

d
pseudo tumor of rank 3

Product of odd no of pseudo terror is pseudo tensor
4 u Aln k b n 4 tenth

If odd of components are pseudo then product is
pseudo

pseudo thing is defined heart inversion

Under proper rotation pseudo tensor transforms as

usual tensor



Symmetric Anti symmetric Tensor
defined art to

pair of indicesAijke
consider a general matrix Bij

Bij can be written as

Big Ai t Sij
where Ai is antisymmetric

Sij symmetric

Aij Bij zB Sig Bij i

Bij Bii B
z Bisi

note Aij Aji Sig Sji

show that under rotation anti symmetric part transforms
to itself same for symmetric
Pij Aij
Sig Stig

in general Aij A y
Sij t S's

but s'ij S'ji
A'ij A'ji



aime Ai 3 3f F sin

a Aij is symmetric
Isumouere
so it is just

b tr A O
E J

tr A Aii 3 8 3 dis DH

p v t p v 2J 3 AV

2B v 2 D V O
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L Fn j Aa Fm 3 An Ji An
161T c

where

and An F Nm Int
ie

c speed of light

In B Exit E 54 t.FI

for the limit ja O ie g o 3 0

Maxwell equation becomes D xD L 21at
BxE I 21at
B B O

F E O

Bz Bz IE

Fm fishers I
IE IE IE

F is 2 Ag IgA FxA z Bz
Fm Zha Iff if i fI i 3 17ft

i Ez



Suter lagrange equation

dxd.laFa I If
I FmFun

ddx.fi x2xrm faFI o

Fm JnAv JsAu

Ef a ftp.fif aca
a 2 CdnAa

oh oh a di y du

Fm l fun di a da InaD O

da f Fa a fan o day fax t fxD o

2 Fxx O

IF O
dxx

Faa O
swerigrage questionfor E M field

for a 3 data doffs ddff ddf o



darts daff tiddffI 0

Third column element of f
Br
B
O

riEs

Br t DER DII O

Iff daft I daft 0

CR xB z t t Ef 0

for 2 4 D E D for 2 1,33

PIE L AI2E

F B D

Bx E E 3
follows from the identity

LIT daffy data o

Fm is invariant under

Aµ An A H Gauge Symmetry
Gauge invariance

ie A As pg
Of Maxwells Equations

if if zag
Maxwell questions dont

change under these

transformations



Fm F'm JmAxl Ji Ai

An An fun
F'm Fm 2 Jun 2,12µA

Fm t Ju Ji A Fun

f m Fm

Fluid Mechanics

yv
ai.tt we study a small blobof fluid

dei still havemourscopic me of particles
insidethe blob

J average velocity of all the
particles in the small volume
element the blob

The whole blob has only one point n

The blobs or the boxes have the size DX

These blobs are mesescopic object not microscopic
nor macroscopic

J mesoscopic variable coarse grained over space



ur

that
want to write equation which

I describes this mesesopic variable

Navier Stokes equation velocity

g
2 15 J D F Ep Fatt ND EH

text hier
Ff dfmitm.tt

wame

N viscosity viscous dissipation
term

f 8 all forces

Tai't 1 acceleration of the blob

Zita.tt at fixed x

III sina.uxittgtf.ua



Whenthe sensor for measuring velocity is located at some
fixed point 5

at time t Itt Dt it measures velocity of
different blobs

butwhen we follow the blob we get the term co F T

Dpi this is writ lab frame

Lagrangian velocity

Suler Helocity

let us look at any quantity Q Could be solar or vector

DQCI.tl Q Ft Tat ft Dt Q CT Hlim
D t at 0 At

act Ht 3dg T Dt t 7 At QCJ.tl

Dt

za
Jf

DQ



Da
Dt

DQ T I
at

Da
Dt

2 J D Q

I Eulerian Derivative
Material Derivative

if a is vector

7 ZI t iv F Q
following the fluid

sittify at fixed point measuring E

measuring

practically we measure 2 justthe Sulerian derivative
w.at time

If I Thi t

Then D fiH 2 54 text D ICI t

also for compressiblef is rate of change of momentum
fluid

dont think that s should go inside derivative et is

not needed



when the blob has particle constituent of some man

Mdf
m did

Blob with N dt

particles of i I f In
Mahim m DUN

z

Hm

Nm daff I Total forceN

Nm d T Total force
at

Wm total man of blob

divide by volume V

INTI da T fierce fore density

Note f Nye

f off force density



so although f is function of T t 5 515 t

it does not go inside

Coarse grained i
observing with lower resolution
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Thi H
E

f fit iv F 5 Dp t ND'T t Faith

EI material derivative or lime derivative in

Lagrangian frame

JT
Jt Eulerian derivative

t hard to calculatei need to follow the blob

f fo constant incompressible

ad heater is practically incompressible

1h51 density oscillates at sound speed

f X c c sound speed

MMMM tu velocity time
t scale

if f tu s is practically constant



Mach number I ee s density fluctuation is

fast as compared to
velocity time scale

and hence practically

propertyofmaterial
constant

4 could be mad
Continuity Spuation for property 4 energy entropy etc

VII

Fits T p
iminium

Ft141 1 du Fy flux of y

ftp.ds fgydv
T
rate ofgeneration or

destructionof 4 inside volume

14 du f F Fy DU t f gydu

dV III E Ji gu o for any
arbitrary

volume
V



forV 0

3 B Ty gu o continuity
volume

Spuration

for gu o

3 B Ju

Ju I

turnt velocity with which it

off leaving
is leaving

Conlin a conservation law if gy o

3 F Xii

If 4 fcx.tl density

Then 2g
at

F Guy

Tf density f go o B SP
pp if T.fi

F if O



Incompresibility B J 0

Recall
gf.fi of Ep ND'T Fact

non linear term

let text 0 If g is incompressible then P
determined by T but not
converse

these typesofquantities are called

Passive Quantities

i e it does not decide it but

get decided by TJ

Reynolds Number SCP I

f Uf L is the scale
T of the flowSLI

f Cf F F f Vo te Vo

y D f N t.ly Vo

N dynamic viscosity V kinematic viscosity



RE tf Vol U Is whinging
Reynolds Number

E
3 T

n

I
Vo I f Xdy

e r

L is the width overparabolic flow profile which v is worrying

If Re eel Laminar flow smooth

ignore the non linear term

X Chaotic or non laminar flow

If Re I Turbulent flow chaotic

at high speedation speed

µTF Edt

Htt Htt
Re eel Re I

f ft t so g fJ Cnp v dimensional
analysis

cnt E.fm I E It



my M L T l

and CU L'T 1 Kinematic viscosity

Muster D mt.gs 10 3 Pa s o 0182
um see

Rhoney 850 Mwata
Pascal N

Nmercury 1.5 Nneater m

no Newton

Astrophysical Vo high Re high

Ocean L high Re high

Blood flow is also Turbulent

Terms on the RMS of M.s equation

ND'T a kind of force Viscous term

P
pressure nets perpendicularto surface

forces on the blob are due to
neighboursThere are other

forces which work tangentially to blob viscous forcelshear force
Mp3



When fluid is compressible there are otherforces than
pressure which out perpendicular to surface

for incompressible fluid pressure is the only force to

surface
viscous term is tangential to surface

Shear flow

it consider flow between
11 I l l l l l l l l l l Vo

two plates
f X

l i e i l I i 71 V o upper plate moving
lower plate at rest

find profile ofthe flow can think of a X Z

plane For simplicity being
Assumptions suppress z direction

is a plate in direction v is not function of
steady flow patternof flow does not change with time

3 0 at a given 5 velocity is

not changing

so J X y Ignore 2 can be uniform
along that also

T X y Vx y Vy y because of 111 ie's
Translational invariance



3 No slip Boundary Condition

Ols fluid which is in contactwith wall is at rest
a r t wall

fluid element 1 blob which is in contact with the wall

is always at rest went wall

y t Esq
v

U o

y D 7 1 o

4 Incompressible fluid
B r o 3 3yI o

Vx Vxly o yI 0

Vy constant

Vy Ugly o Vy y L O

t Uy 0 Vy is zero at the true walls

J Vxly x



5 Non turbulent laminar sloe flow

f f of 0

but here we can see T B T 0 exactly zero

4 3 1 vsFy Ux vxH Ivy 0

sine Vy o Vx Vy Zz Vy 0

Here the non linearly term is any way exontly zero

so we can ignore this non linear term from beginning

Now we solve the N V espuabon

Et E Thi top f D v fact

n equation

ZIT 0 because of steady floe
t.ph 0 anyway

3 n.gg n'vx Ifi
8
Try2



P can only be function of y
so Jp

27 0

July O

Tyr

I si il na Vo
Ux Ay B

so

BC Vx 01 0 Ux L Vo

yequations 21
ay

nC Vy

2p
Ty

D P constant

v

ng
n s

my VEYv 0

linearprofile p constant

So what deriving thefton Tangent
So called Shear flow
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vz vz
Z ri s Couette

ee Flow
v viscosity

I driven flow

Poiseuille Flow pressure driven blow

s v o Abedin
T 2 o CJ Bhi o

Pi s v Pr h grow flow
f

s t
nEo so to No slip boundary condition at

M L
P Pr thewalls

pressure difference breaks the invariance in n direction

Plx Sime it is imonprehible
For rule

y just
M fluid so even the

corn
n

independent
invariance in x

Ugly direction is broken we

solution

exist

get velocities to be
independent of n

for L 7h

what happens at boundary y o or y h

will not affect much in the middle



at x o pressure is same

Soi Vy X o y
D

so pressure cant be fution of y

x Y
o if Vx UNH

HI 0
Try

so Vy content

at h o h L Vy O

t Uy o

So we look steady state solution Vx Vx y
N VI.es
alionypeecl

slowfhohe
steady

state

3 iv DIRT rip n pro

Vx 2xVx 0 exactly here no needto truly
worry about low or

high Re
Fp n D v



x 2 n fyVx
Y

y
o p pCx p is function of n only

3 n ITH
funding of T fantion ofy

LHS function of n
Rns y

They haveto be constant

op
Tx

constant

so p P t 1 Pre Pi

hype MIL

so M VK.ly
Tya

Pz
A

zy L.ch



Vxly In PII xy t Agt B

Vxly o o D O

Vxly 47 0 gives us A

Ln h't Ah 0

A In hy pre A

vxlyt ztn.CI y
2
hy

p Pr Dp O

Uxly Dain yr hy Thisflow is driven by pressure
difference

Vx In EI y hey

dp
dI Ed



so Vx dd.Yzly.LI flow under constant
DX pressure gradient

longer
small N

EE x Z plane

p

a x Z plane

f µ
circular iron section

use cylindrical
Paraboloid floe profile coordinates

we got steady non accelerating solutionalong
TO D n

Vx Vx yl

so net force on fluid element is gone actually

find forcedueto neighbours Drag



Stress Tensor

consider any volume
element in continuum
media

ds.it JafI f'n ntfoyh.y
fI z

dsn

s ei
d5 ds if

I F IF G is a matrix

f D
TFIIIfar

ads

This surface Jetoifs to some
volume



IF.d5 0
neighbours are pulling the volume element

along the same direction as d5
lie outward normal

dF.dk 0 neighbours are pressing or compressing the
volume element

j 5T f

Fix

r a

u

DF DI It dft.in
I Textensile when 30

shearforce or

Unit surface
comprettine when o

I

tea

X t
we choose unit surface
and now directly interpreting 6 as forces



G j force onunit area alongE direction on the jh surface

surfaceI
diration of
force

z

f
can take origin at midpoint

y
nay

if all
elements

of Z

A Fx ft

t.ir qAromsFIaIgstofonisaamsiYe
ne II ytwo

Y L fq.jo I we

Here we have 6 frees
Them

total fore along x direction



pit

gps
I Cdzdy

EW
iz

y ry Efif.fi
nidxfF.db.DZ

Is To keephandednessY k dy

Fx foxx mtd Q x x dydz

Gxylytdy 6 y y dxdz

6 2 1 del 6 2 121 dxdy

Fx
dTdydz

Force per unit olume

d_dz
6xxlxtdH Ga 6 qy

dx dy
6 12 127 6 2127

D

df DIGI DEEZ

Ext f nos fore density



fy Eyi
ft Ez fi J

DE T.dz

Total fore on the volume element V

F jfE.ds IE.muoi5
EdvI

fFdv JOB E du

I v f v

reggae forfersity

f I E
F fFdV definingequation

for Force density
F
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Identify the surface by identifying normal na

fµ
A DJ Dsmh

F E d5 Force
away from the

y I volume element

61111 GUN fog

ill'd l

G Gr Gs

I HEL

G Gr Gz

X H
dyed

pay
It Fly dy In 1 D only

longitudinal force
Tangential force at not there



If F is positive definite Stretched

1
Fly co

FG1dg

compressed if f y 7 Fly tdy
Stretched it Fly fly1dg

11 2 D
ut stress matrix be positive gy x

a gait but g fi L
air constant positivedefinite

jaigin I b

big

Net force on triangle

8 tax Etty E tax big

El ai bag tax b5 belowfnstafE valor

To 8 8
This could

so netforce on the triangle is zero not be
done if
6 worried in

space



He had fi II j
DN j

f ffi forten

Ty we are only thinking

of contact forces

F Kgffitemwilea thinking

on
Divergenteoren

F dF End 5 115 E du

j g v In the absence of
external force

F f du is the defining car for fora density I

ffdvflri.EDU
have

ve

no
forcer

like
detrthi

I D E wher
only

surface
forces

growing

et

f du CF D 83 0 for arbitrary V



I D I

44 so I is a local expressionft IH www.age.si.mea
push push forces

How does 8 looks like This term will MLYhere

For a fluid Gj FT Po ij t 6 jlx

P conventional pressure
stress due to non
ideal fluid
lex fluid with

friction

friction between

volumeelement of
fluids

Consider a volume element

Pdij ensures that preserve

drays art normal to surface

Our notion of
pressure calmed 1 to Santone compresses the volume elements



DJ
DE Epids

Ep j P Si

dfi p Sig dg Pds

DE x d5 ie DF pd5

Now Qf

dijan III LI h.v
ve

let u Vr

IN II
amphibian

Oxy te ay 2

exampled To cheek 64 a or dij Ifi
EE 3 1 The

F di 36xy 3
E correct



we would choose higher order term

6ii a Effi 81u 2Xu

Wecant have Gij x vivo
bemuse for uniform u also we

will get friction
So vivj is at possible as friction

term

Lu Ui Uj Un is pourble

what about G x Ui vn
oxu

This is
pemble

but it is

higher
order

in
v

G'ij should depend on gradients has to be 2nd order

ij 2 Terms cymmetric in i j

like III 3



2 that 3 lt 3 3 I

Due to global rotational symmetry only symmetric
combinations are allowed

Rotating burket of water

F J Fox F
This corresponds
to uniform
rotation win

at

move at some rotational speed so no

relativemotion some friction

So Gif 0

and it is only possible if
6 x syn
i

o a I it 71



ii I L3s 7
some constant

Shand take antisymetue pout because that will
not go to zero for courses like T Go xx

Still canhave X dij.CI
a Pij CD T

Gif n 3 x sij.ru

Conventionally written in follow'sform

6 ij n ft 3 zohi.IT tni 8ii3fnn

To a pier issplit
in this form
so that the trace of

ft 3 Fdiiifff vanishes



often written as

6 j n fffi iesj 3dij.IT tX.dij fxIan

I 6
has no change in This associated

volume but does to volune

volume deformation
change

A
f Dynamic viscosity

L eX viscosity die to compressibility

T

Therterm Z u is due to compression of the

fluid and contribute to non ideal poet of

fluid



Application

what are kind of forces outing on

Solid liquid interface
T E

df G in

force on the fluid element kebob

due to the solid

Forceon the solid due to liquid

Him
DF 8 in

note in in
E na

Application

r in on
vx Intently cy h

parabolic profile



Drag force on solid fat y h

Eh G not

for incompressible fluid
E n 3 preemie term

here

Fi for 3 p.dijf.mn in 9 5

Fx n.dz fIx7nxfIfEytz ny

j x j y
70

n Iff 3
n 2 N

Iy

f Yf Ch h t

y h



Fx LRDII
2mL

ppg
pressure coming due to pressure term

Fx

i

what is Fy on upper plate
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ai t

f y Fx
F I in volume isnot

changeh

p
under pure

shot

o

s ITI t ii E i Bp t n p't Feat

q
throat

Gj P 8ij an 3 it j 3 Iij u

I orij KunHk for inompremblegheof.io'M I fluid
Bulk viscosity
not physically a friction I
related to expansion compression of volume

g Force on fluid element which we are following in space

Jg III du JOE dsf ffext dy
venue

surface

fd5 ftp.oldvtffoxtdV



I F E t Fert

f Dp E j Feat
i

lets work onlywith SDp E j

f Poi n 3 Hii3

s s ii Fifa

e 7 3 n EE m l3 He e.nlEil3 nD
e Dff rip n fp't ftp.T

S 2,1 F 5 it

for imonprehible fluid B T 0

g Dpi Dp t ND'T ft F D CF El Feat

Fuld Monier Stokes Swinton



EH for fluid in gravity FIE 5g E
Ell

R p PrIt

Pi P2 symmetry Vz Vzer
z Vy 0

Vr o

Vz w R D No slip boundary condition

The continuity equation

t.zir.vn I 3 70

Vz Vzer due to

tramitational symmetry

Zg z Vr O along 2 axis

v Vr constant

content o VrCR 0 contradicts me dip
boundary condition

There is no radial velocity

so constant o and weget Vr 0

UHH part

equation 0 4.31 of p not funlion of r



fenudion o gig If p is not fontion of y

th 2 12 equation vr zVz z Is Ij s

T
fumlionof z

fumhon of

They are constant

t.IE f.zrLrEE
2 T

So They are some constant C

f Iz C and Fy Zg r 7 c

plz linear funtion of Z
with P Pz at 2 o L

respectively

f r ZF G E a

3 Ellie
Vz f a cu lnr t C 3



Cr must be zero because then

VzCr O so

To avoid at r o CEO

Vz In C If C

f Iz G
C is known from

here

UzCR O Uz ly Cra R

Vani he A Parabolic Flow

Gamed

g g
concentric circular

cylinfltfy.mg

This is viscousdriven
Polar analogue of
duet flow

ve

force v th

cylinders i 2 ranges over C a a

Voyer par



requisition ly
2

of erosion uol.t.zfk xft.zfr.FI 1
Kobe this

get Vol

FY tr Iff o

Vy rn

M yn r n m il V Tn h Z m t
O

M T mln 1 1 0

m n m I D

n Ii

Up Ar By

uglier ran get A and B
Vy Ri I R

Voir ran him rn ri ni I



limiting ses

I L D

Then Vplr Dr linear profile inv

rz 0 R N no outer boundary
sir

no er Cra rarity

i
R r
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f Ifi iv D vi Pip fg under some force
RAVI f Ff potentialforced
est'T ftp.T

when I small Reed steady state

drop the Lns Stokes equation

Incompressible B J O

TO Ideal fluid Sulu Equation
3 0

Here Ca Incompressible Cbi Ideal n are fore

Tx c5xiI E E iv F T

SIZE JxC5xiD SECE Ep 95

divide by 1

ZI Tx Ext D I BIP g

where TTIP IFI for imonpreuible
D D I F
D I

III ixcrxvD e r LE fo z.gr s

in general
To



Now if steady state 1 Curl free flow arrotational flow
2J Fix f D
It 0

Then O I YCI.tl
f

sinue steady state

it cant be t dependent

0 5,447

where VICI If tf Z g

The fundion Xcel is called Stream function

Stream function YE VIT Pyo To
where f D r

since 54 0 4 does not worry in space
ii Y is constant

I am minimus
x x

F It Et
let r la II Pyo II t foe



Y I I he II

Y In Pyo to K E t I IF
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J vorticity

IIT 2J xD D y

Y stream function Pyo r

At steady state 25 5 54

Stream line O A curve at a giventime smh that its tangent
at any point gives the direction of it

g
Jiri

at a

given
time

streamlines cant cross at a

point otherwise we will have
true velocity for a particle which is unphysical

dasI X Thi Isis's x Tais

Js s is for stream line



9 99 a a a Two possibility PB

9 which one should we

take

cheek that the points on a streamline have same d

X chorouterizes the stream line

Streamliner can change with time

25 5 84 y I Pyotr
Along this streamline how much Xchange

dY 33 dk i 54 di

Na di is movement along stredine

IF L This ds off at

dy D 4 x Judds

dy 2 Tx ut Cx Tds

O

d4 0
along streamline

Xdoes not change along streamline Stream function 4

remains constant on a stream line



Y

te
Bernardi'sTheorem 4 1 Fo ref

Body forces are conservative
yfIncompressible

humorthen Igp D j fore per unit
mass

only for f fo constant f fog

Ideal fluid f FO so D gz
o r g z

Steady floe 8 o

His constantalong streamlines

Vortex lines tangent to this line givesdirection of Jo DII
Jw is position verter along thedice G p if vortex lineds

s

ws0
Juts



dy Fy Birds change of 4 alongthe

2J x Io pods
Vortex

o

d 4 0 along vortex line

X does not change along vortex line

X isn constant along streamline Vortex line

i line stream lines goVertu

around the vortex

Ibn eine
Streamline

VortexSheet when many vortex lines are parallel to

each other and form a sheet

Vortex Tube Vortexsheet curl up to form tube

ife



qenetraaggg.mg

so

ie The fluid is going
round the vortex tube

Stream line discs
S stands for stream

DJsG
Ts

X T

so d a v dog LVy daff L Vz

so d duets diff x ds

lets say Cvx Vy Vz TCF given to us

Now draw the stream lines at a given time

Vx Vy
zt Vz O



d xv Is
Itt

FYI x Vy Is
It 2T

let 2 1
dats it doff Fit

Note that time is fixed here

f
d I t

bn t now eliminate s

similarly bn Ef
I get equation

between ys Xs

including a parameter t

y.IS where n

alternate
dd
y f Y

d
s

y
yIs

enfysotn.at o IF 5



so where n Itt t I att
1 12 t

Y te 1 Tat tat t o n
good

cxo.ro

at t o m I Yg 1

at t I n 0 Y yo

at t Iz n a x Xo

Pathine actual path travelled by an individual fluid particle

Tracking a particular

This is not
particle

The particle streamline
moves on path
line as time passes

Streak line at a particle point ix yo

all the particles which pass through us 707 before t

where they are now



Streak line is the present locus of particles which have
passed through ca yo at earlier times

udorrhddyedaff

a point

The fluid
Hogo

pond told for steady flow
away

the
color

and

you
bn
trackthem

path line Streamline

Chandrashekar book 1Astrophysical calculation

some stability adulation
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Second Quiz fluid nah only polar spherical polar
specifically

streamline

snapshotat fixed t

Pathline Hag a particle follow it in time

for a given particle as time progress

0Streak line
gives present borns of
all theparticles
which pass

all particles passed through exogo

before t
through exoyd
xoxo at
Ict

Examdell Velocity given u I v y T cu v

streamline Jls u d V
a space curve

u I v L
l t t

Siren

X g e
t

y c es H2t

y yo E
m

where n Y t



at t 0 to

yo Y 0

path line dI u j v DI
att dt

lnf but t

at t o c
X c Itt

but Xlt o Xo C Xo

X Xo Itt

zdf u GI Etat Kalitta at

en tend 12

y I 12T
2

to y yo Cz Yo

y yo I 72T
2

eliminate t get trajectory toxy3 o



y yo I 21 D

y streamlineat Ct o IX y1 1 0 yo

Path line

Xoyo

Streakline

U L Itt y Cr I 12T 2

All those particles which poured through xoxo at Ut

Xo Cc It 2 yo Cz 1 22 2

C XI c I
1 2 1 22

t

Ht 2 in Ht I

Y f yHlt2t Y
i iClt2

Yog
1 21

1 2 Ct 11 TI



at t 0
Ago a strenkline

y
streakline

streamline

Path line

Yoyo

This means that all these particles

o yo t
home passed Ho yo before t

Streak line contains information about

the particle which crossed Ho yo
before t

Whereas stream line tells the future of particle
which crossed ix yo att

Time Reversal Symmetry is broken in Maurer's StokesSquadron

f 3 co B F Bp qp2J
Breaks t t symmetry

because I T and so It 3



J B J J J

but D f pv

Soi LHS S ZE T Blt is time reversal invariant

Mpw mph
so on Rns NDT term breaks the

Time Reversal Symmetry

rip rip
The viscosity is not symmetric under t t

and this causes the Maurer's Stokes equation to break

time reversal symmetry

sohu.it

i



for time independent

T.hrflews
streamline i

i
pathlin are same

streakline

For time independent flows
and streakline pathline grows with

time and

follow the streamline

Streakline Pathline grows with time and will follow
streamline
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or area

f
A

energy sombre tension

surfare stretching energy KLA Ao 5

4 i

e aInterface
i r

Pu

p pre
curved interface

p
l has more energy
due to moren

Sp 8 Lp Im area locally

Principle Curvatures

Tangentplane

curved surface



y
radius of curvature along the flat

direction R

but R R finite
B curvature between R Rz

at a point we can drow many circles

Pri The maximum and minimum raddii of the
virus that we can draw through a point tangent to the
local tangent plan.ee

R max the min

ez straight line

R R O

examdell sphere p j
both circles home curvature Xp

both principle curvature affine



Grente Circles

i

r Equator

I

one of the principle circle radius is

finite
i

it J one of the minim
circle radius is so

Dp 6 Ir th If
q for spherical interface

laplate loudly the area will be

uomprehaffhterform a path of a sphere

Thepressure needed to prevent curvature of the

surface



i

ELASTICITY

Hmmm when released it comes back

ninth

displacement field it X X
xi gem

on

case

x'B Hat Un xn Up
XA Xp t Ua Up

Continuum XA XB one closeby
then Xp Xp DX

Xp xp dx

and Up Up du

dx dx t du

DX DX du i pullingindices for vector components



dui Jui
g
DX

dxi DX it 3 dx

dx dii t 3 dx

Sanne Ui CI is a smooth function

Changeindistamee
How does the distance change DX

dxi di It dx Dvi
TX

I U i j or Vig

Nowwe write the line element

dxi di t 3 dxi 8in Btfin din

8ijdx 8in din t din 3 DX DX u

L
dxi 8ij.bg n.dxi.dhn

043 5

if u is smooth then its derivative is small number



Arumption that u is small field
so its gradient is small

dxiih dxir ZYndxu.dk i t 3 dx din

b
Ww
Tx din

DX

renaming dummy
index

dy DX t 2dxidxj.FI
2 Xj

23 LEE 3 113 3
Si t Aij

symmetric antisymmetric

DX DX dxidx Si Ais

dxi t dxidx Si dxidxjA

dxi dxi t 3 3Y dxidxi



NOTATION

3 3 e j STRAIN TENSOR

DX DX 2dxidxj.ci

ipq
dxi dx t

2eijdxidxjeii
ICF.fi 3

st L 3 is

Go to a frame in which eij is diagonal
so will need to choosedifferent frames at different point
to make it diagonal

here sum over i

dIi dy t 2 E dT ith element me sum
over i

Cij di Ei tin diagonal frame
no sum over i

e L



DI DIY 1 2
_me sum over i

Renown Cij was real symmetric

it can always bediagonalized by a rotation

and also all the eigenvalues are real eigenvectors are

orthogonal

dii is along that orthogonal eigenvectors

if I
b r

Y DI DI Eii

x IT I Iii
Id

Iis
i
i



Continuum Mechanics Shoaib Akhtar
Lee 16 119thMarch 2021 3 30pm to 5 00pm

aii

dti D Ii at Ei

change in volume dxdydz dx dy da

omitting the tilde

dxdy da dxate dy l It E e d 2 Item

1,2 3 I X y Z

Eis Ei i
f ai are small 3 even smaller

LIFE ties

dxdy da e dxdydz.cl en t en t en t 067

du dull 1 Tries

Tree does not change under rotation of frame
Tr Cei Tv Ei

so du du Clt Tried



Tr e is froutional volume change

Trce dV
dV

Connecting stress to Strain
Constituitive Relation

Gij f Cei j

f

7 I

p e
1 If Y Aly

Strain is effect
Stress is cause

assume linear response



Stress c Strain ei is symmetrized

Gij I eijCx form of Tui
2Xj

Ei tx 2µ lij I X dij Eee

Ts Isotropic

assuming linearity in

simple way

the 2n.li CT term

he could have Aijhl Ene

M and X are lame Constants

Gj is a linear funton of eij because eij is small

Gj should not have constant on Rns

if Gi fi e t C

because if Gij o f ij e
C

i e Eij to

cant home UiUj on the RHS since Ui constant
ie uniform translation

we will have stress

Gowle have to always use their
gradient



although Rui is small

but vivj can he barge

I
A tEEt
I

1 Ux N1 n

U is large but 8 is still small

a

Bending
dueto

gravity
eel but Ou may not be

small

Oij must be symmetric for angular momentum coveruation
when there is no external torque

This is why we dont just add 3 in RMS of

Gii s hut 3 3 so we indeed

use Eij



EH For a Bar

A B A B

XA XB XA X B VA VB
ie dx dx t da

ie l l du

du Dl

bed die g Fractional changeof
length

Ff 8 Y Def found before

Gi Y Ifi its

G j 2M Eij t X 8ij Eee

Tr e Eee e

2x e

bij 2g ei A Sii 3 3 3
DV dV It Eee

D lee dU dv
du



E j Ei j ly Dfij t I D Sij
hostrl has Trl 0 has Trc D

D

Tr Cei D
Tracelesspart of
strain Tensor

This does not lead to
volume change
but it changes the shape of
the object

71 Etf Effamemthgent
due to traceless part
of strain

so's D di tends to volume change

bij 2ft ei j ngdij t K dij D

t d
Shear Modulus BulkModulus

217



Show fr µ but X 3 µ t k

D ki 8ij leads to me shape change but only volume

change

Imagine pure strain of type eij g dij D

lii Dj no sum over i

e i j o for it j

so 3 Iof 3 F c

Ux c n

Uy c y so we home just scale

uz c z transformation in all direction

by the scale factor c

foray possible constants like
Ux C N t C

c in this can be gotten rid of
this just means all points shift in n

diration so me shope change for sand
just pure translation by shifting
N origin



Sxamplell it if

i
i

put force in
u
e it in 1111 u direction

displacement field U a Xi

3
y

z
directions

are

Ur b Xr

43 b givin
Assume

symmetry

in

A
y

Strain field Ei I 13 3

ei I 88 8
O O b

bij 2 µ eij dij.dz t K D dig

D a t b t b at 2b

gi lmfaoo b

o s

of
k I aim

a
O O



G K Cat 2b 431 Ca b

For K Cat 2b 2 Ca b 833

Nostress on y and Z surfaces 8zz 0 833 0

j
E

since Gr or Gz does not depend on n

and we satisfy boundary condition
G 0 I 833 0

gnaws

Wow
At

tokeep
positive

for

k 2,1 Cats
normal

materialCatrbT

b 5 is called
a I 2134 8 PoissonRadio

if 3k721m then be 0 shrinks along y and
2 direction

if expand along a

If volume has to be conserved ie incompressible

weneed K D Kis bulkModulus

Fu o b 14 for large K the costof
a 2 expansion or contraction is large

K issmall forunpranth g the



Usually when material expand in one direction it

gets shrinked in other

of one

If shear modus µ a
by I 3 6 1

so range for e C l the

Regularmaterials have 8 so stinks along y 2 if
pulled along n

Can calculate G

G KC at 2b 431 Ca b

using relation by 12 10
m 3K

G a 9 M k

f f
3kt

stress
along

strain

n
diration

guk Y Youngs Modulus

for simple linear elasticity



Volume change

D Trleij a 2b
0 only for K

At 2b to in general

at 2b a i t2fI k

a.at HY

a Itu
at 2b a 31

µ 15K

51

3K
where change

when incompressible hee hom k N

In fluids
g FE ii IT Ep not SICK F text

I Rptiuiistu.su ymimexmioni

Shear
viscosity

for imorpremble Grid s o

for
imomprenih.tl d Gso system chooses to have

thisresistance
is 5 T otherwise equation
so 5 9 becomes singular



Continuum Mechanics Shoaib Akhtar ai

Lee 17130MMarch 2021 3 30pm to 5 00pm

Shear Stress
mmmm

Ii imam

at 2b
3

froutionalvolume change D I

At 2b G O

example
TK I

ft t.TTmodl Ux 8J assume no volume area
f ay o

Change

ie 5 12

eii fff.it
tz2XileiiIfgh8okI KI I3 strannatix

Tis 2MLei D t K D Sij here D O



G 2µ lij
o u f

us In.ro

Torsioninal beam
K L

INX1

FI
mase

l l s
There is shear fore

e t t between
every layer

Xv

portion
Ayame no displacementalong 93

is fited
mm

points on circularCross section rotates

by small angle 8

cosy Simo

Eis Eis fire Hill0 0

we are moving vector j
so active rotation

not rotating the frame



Hm

fI
PanineRotionlbanue the frame rotatednftµ
is I t Eff sonogram

equal as vertor
components

ftp.ctiueRotaionctheuutorrotate08 f't not equal as vector

f faux
aid

ax

not cosy
8

0C

7 3

L

Assumption 0 2 Xs

ie L Nz

some elastic
modulus

Gj K D dij Ei Dj zµ
thot Bulk Modulus K

ai tc
is

X



xi

iii t.fi

U Xi X Xi ios xXy 1 Xz Sima Xz
U Xi X 2 Xz ios xx z l t X is in his
leg Xj X3 0

Assume X is small

cos xx I kid
2

Us I 0

x L

L small means y e e L H

L is length of Beam



eii It'a 3

3 fix
do

O O

ki 8
o

D tr Cei O me volume change

Gj Zu ei HE t k.D.si

Ei 2µeij

5
O mix

mix

force density f fortune Zx Ei



f I Gi t JIE r t 813

O t O t O

f O

f O

F 0 fora per unit volume is zero everywhere

and it is consistent because the body

is at equilibrium

Meapplied torque had hold it

given point are at rest internal
stresses have developed

we want to find

e lol forces on surface

j 7 3

Gz µ dire

Xv 623 MAXI
633 0



r X l

f
Fore laren

ca w f µ a l Xr T X JGese

f e u Gz J In I Mj
For

F I 5

Torque per unit area J x F DA

txt x µ.xTxi DA Z

my Gf Xi dA I

µ a v DA E

Mx r I Torque per unit area

NIT

Torque on the cross section r a r r drdo

R

m d 2T 183 dr
O

R
z

I z Tongue applied by section 2 on

sation I



t


